Boiling, Whirlpool, Hopback & Cooling

Written by Steve Cannon on January 1, 2022


After mashing, the beer wort is boiled with hops (and other flavourings if used) in a large tank known as a “copper” or brew kettle – though historically the mash vessel was used and is still in some small breweries. The boiling process is where chemical reactions take place, including sterilization of the wort to remove unwanted bacteria, releasing of hop flavours, bitterness and aroma compounds through isomerization, stopping of enzymatic processes, precipitation of proteins, and concentration of the wort. Finally, the vapours produced during the boil volatilise off-flavours, including dimethyl sulfide precursors. The boil is conducted so that it is even and intense – a continuous “rolling boil”. The boil on average lasts between 45 and 90 minutes, depending on its intensity, the hop addition schedule, and volume of water the brewer expects to evaporate. At the end of the boil, solid particles in the hopped wort are separated out, usually in a vessel called a “whirlpool”.

Brew Kettle or Copper

Copper is the traditional material for the boiling vessel for two main reasons: firstly because copper transfers heat quickly and evenly; secondly because the bubbles produced during boiling, which could act as an insulator against the heat, do not cling to the surface of copper, so the wort is heated in a consistent manner. The simplest boil kettles are direct-fired, with a burner underneath. These can produce a vigorous and favourable boil but are also apt to scorch the wort where the flame touches the kettle, causing caramelisation and making clean-up difficult. Most breweries use a steam-fired kettle, which uses steam jackets in the kettle to boil the wort. Breweries usually have a boiling unit either inside or outside of the kettle, usually a tall, thin cylinder with vertical tubes, called a calandria, through which wort is pumped.


At the end of the boil, solid particles in the hopped wort are separated out, usually in a vessel called a “whirlpool” or “settling tank”. The whirlpool was devised by Henry Ranulph Hudston while working for the Molson Brewery in 1960 to utilise the so-called tea leaf paradox to force the denser solids known as “trub” (coagulated proteins, vegetable matter from hops) into a cone in the centre of the whirlpool tank. Whirlpool systems vary smaller breweries tend to use the brew kettle, larger breweries use a separate tank and design will differ, with tank floors either flat, sloped, conical or with a cup in the centre. The principle in all is that by swirling the wort the centripetal force will push the trub into a cone at the centre of the bottom of the tank, where it can be easily removed.


A hopback is a traditional additional chamber that acts as a sieve or filter by using whole hops to clear debris (or “trub”) from the unfermented (or “green”) wort, as the whirlpool does, and also to increase hop aroma in the finished beer. It is a chamber between the brewing kettle and wort chiller. Hops are added to the chamber, the hot wort from the kettle is run through it, and then immediately cooled in the wort chiller before entering the fermentation chamber. Hopbacks utilizing a sealed chamber facilitate maximum retention of volatile hop aroma compounds that would normally be driven off when the hops contact the hot wort. While a hopback has a similar filtering effect as a whirlpool, it operates differently: a whirlpool uses centrifugal forces, a hopback uses a layer of whole hops to act as a filter bed. Furthermore, while a whirlpool is useful only for the removal of pelleted hops (as flowers do not tend to separate as easily), in general hopbacks are used only for the removal of whole flower hops (as the particles left by pellets tend to make it through the hopback). The hopback has mainly been substituted in modern breweries by the whirlpool.

Wort Cooling

After the whirlpool, the wort must be brought down to fermentation temperatures 20–26 °C (68–79 °F)[73] before yeast is added. In modern breweries this is achieved through a plate heat exchanger. A plate heat exchanger has many ridged plates, which form two separate paths. The wort is pumped into the heat exchanger and goes through every other gap between the plates. The cooling medium, usually water, goes through the other gaps. The ridges in the plates ensure turbulent flow. A good heat exchanger can drop 95 °C (203 °F) wort to 20 °C (68 °F) while warming the cooling medium from about 10 °C (50 °F) to 80 °C (176 °F). The last few plates often use a cooling medium which can be cooled to below the freezing point, which allows a finer control over the wort-out temperature, and also enables cooling to around 10 °C (50 °F). After cooling, oxygen is often dissolved into the wort to revitalize the yeast and aid its reproduction. Some of the craft brewery, particularly those wanting to create steam beer, utilize coolship instead.

While boiling, it is useful to recover some of the energy used to boil the wort. On its way out of the brewery, the steam created during the boil is passed over a coil through which unheated water flows. By adjusting the rate of flow, the output temperature of the water can be controlled. This is also often done using a plate heat exchanger. The water is then stored for later use in the next mash, in equipment cleaning, or wherever necessary. Another common method of energy recovery takes place during the wort cooling. When cold water is used to cool the wort in a heat exchanger, the water is significantly warmed. In an efficient brewery, cold water is passed through the heat exchanger at a rate set to maximize the water’s temperature upon exiting. This now-hot water is then stored in a hot water tank.

EnglishKhmerThaiChinese (Simplified)
EnglishKhmerThaiChinese (Simplified)