Mashing & Lautering

Written by Steve Cannon on January 1, 2022

Mashing

Mashing is the process of combining a mix of milled grain (typically malted barley with supplementary grains such as corn, sorghum, rye or wheat), known as the “grist” or “grain bill”, and water, known as “liquor”, and heating this mixture in a vessel called a “mash tun”. Mashing is a form of steeping and defines the act of brewing, such as with making tea, sake, and soy sauce. Technically, wine, cider and mead are not brewed but rather vinified, as there is no steeping process involving solids. Mashing allows the enzymes in the malt to break down the starch in the grain into sugars, typically maltose to create a malty liquid called wort. There are two main methods – infusion mashing, in which the grains are heated in one vessel; and decoction mashing, in which a proportion of the grains are boiled and then returned to the mash, raising the temperature. Mashing involves pauses at certain temperatures (notably 45–62–73 °C or 113–144–163 °F), and takes place in a “mash tun” – an insulated brewing vessel with a false bottom. The product of mashing is called a “mash”.


Mashing usually takes 1 to 2 hours, and during this time the various temperature rests activate different enzymes depending upon the type of malt being used, its modification level, and the intention of the brewer. The activity of these enzymes converts the starches of the grain to dextrin’s and then to fermentable sugars such as maltose. A mash rest from 49–55 °C (120–131 °F) activates various proteases, which break down proteins that might otherwise cause the beer to be hazy. This rest is generally used only with under modified (i.e. under malted) malts which are decreasingly popular in Germany and the Czech Republic, or non-malted grains such as corn and rice, which are widely used in North American beers. A mash rest at 60 °C (140 °F) activates β-glucanase, which breaks down gummy β-glucans in the mash, making the sugars flow out more freely later in the process. In the modern mashing process, commercial fungal based β-glucanase may be added as a supplement. Finally, a mash rest temperature of 65–71 °C (149–160 °F) is used to convert the starches in the malt to sugar, which is then usable by the yeast later in the brewing process. Doing the latter rest at the lower end of the range favours β-amylase enzymes, producing more low-order sugars like maltotriose, maltose, and glucose which are more fermentable by the yeast. This in turn creates a beer lower in body and higher in alcohol. A rest closer to the higher end of the range favours α-amylase enzymes, creating more higher-order sugars and dextrin’s which are less fermentable by the yeast, so a fuller-bodied beer with less alcohol is the result. Duration and pH variances also affect the sugar composition of the resulting wort.

Lautering

Lautering is the separation of the wort (the liquid containing the sugar extracted during mashing) from the grains. This is done either in a mash tun outfitted with a false bottom, in a lauter tun, or in a mash filter. Most separation processes have two stages: first wort run-off, during which the extract is separated in an undiluted state from the spent grains, and sparging, in which extract which remains with the grains is rinsed off with hot water. The lauter tun is a tank with holes in the bottom small enough to hold back the large bits of grist and hulls (the ground or milled cereal). The bed of grist that settles on it is the actual filter.

Some lauter tuns have provision for rotating rakes or knives to cut into the bed of grist to maintain good flow. The knives can be turned so they push the grain, a feature used to drive the spent grain out of the vessel. The mash filter is a plate-and-frame filter. The empty frames contain the mash, including the spent grains, and have a capacity of around one hectolitre. The plates contain a support structure for the filter cloth. The plates, frames, and filter cloths are arranged in a carrier frame like so: frame, cloth, plate, cloth, with plates at each end of the structure. Newer mash filters have bladders that can press the liquid out of the grains between sparging’s. The grain does not act like a filtration medium in a mash filter.

EnglishKhmerThaiChinese (Simplified)
EnglishKhmerThaiChinese (Simplified)